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Lower bounds to ground-state eigenvalues Il
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An alternative to the Temple method for calculating a lower bound to the ground-state
eigenvalue of an operator is presented. The method presented is an improvement and general-
ization upon a similar method [M.G. Marmorino, J. Math. Chem. 32 (2002) 19-29]. For the
system tested the lower bound of the current method is significantly superior to the Temple
method and the previous method. Furthermore, the current method (like its predecessor) is
able to generate a lower bound when the Temple method fails.
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1. Introduction

A previous report [1] introduced a new method for generating a lower bound to the
ground-state eigenvalue of a Hamiltonian. It was shown that the method was similar to
the Temple bound but, in some cases, was able to provide a rigorous lower bound when
the Temple method could not. Despite this success the previous method suffers from
several restrictions:

1. Bounds the ground-state only.
2. Requires an exactly soluble base Hamiltonian (in part).

3. Requires the full Hamiltonian to be a positive perturbation from the base
Hamiltonian.

4. Requires a separate calculation to bound an overlap integral.

In this paper we remove restrictions 2—4 so that a general ground-state lower bound
results comparable to the Temple bound. This method and the Temple bound require in-
formation which is generally not available and so the bounds produced are usually not
rigorous lower bounds. In the special case when restrictions 2, 3 are satisfied, then
rigorous lower bounds can be obtained by both our method and the Temple method. Re-
striction 2 is severe for our method where a very large number of the base Hamiltonian’s
eigenfunctions and eigenvalues are used; on the other hand, the Temple method requires
knowledge of only the first excited-state eigenvalue of the base problem.
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2.  Theory

We begin with an intermediate Hamiltoniat':
H/=P5HP5+ Pr(H + C) PR, Q)

whereC is a constant and/ is the full Hamiltonian of interestS is an N-dimensional
variational subspace ard is the complement o5, Ps and Pg are projection op-
erators ontoS and R, respectively. We assume that the lowesvariational eigen-
pairs .1, f1),..., (A, f,) of the operatorH|s are also the lowest eigenpairs of
H'": (E'1,y), ..., (E,, ¥,), where 2<n < N.

The perturbation off’ to the full HamiltonianH is P’ = H — H’. Our lower
bound formula is derived from the variational theorem:

Ey = (YulH'[Y1) + (Yu P/ Y1) = Ef + (Yl P'lya), )

where 1, ¥1) is the ground-state eigenpair of the full Hamiltonian. It remains to bound
the non-positivdyr1| P’|r1) from below, which is the subject of the section 3. (The non-
positive nature is evident from (2) sinég; > F;.)

If we are not certain that the lowesteigenstates off |s and H' are the same, then
there will be a lack of rigor in our method. A similar situation occurs in the Temple
ground-state lower bound which requires a lower boufi#'®, to the first excited-state
eigenvalue E», as input:

(p|H?|¢) — (9| HIp)?
Ey > (9|H|9) — ower
' E3" — E}

: 3)

whereg is often obtained from a variational calculation and thus equated fittA rig-

orous EXWe' is usually E2 from a base Hamiltonia#/® which becomes the full Hamil-
tonianH = H°+ P under a positive perturbatiaP.) Furthermore, in the Temple bound,

the variational estimatép|H |¢) (often equated with.;) must be less thaE'zower. The
Temple bound is sometimes used without a rigorous lower boundA¢2]. In general

we are unable to prove that the lowastigenstates off |s and H' are the same for our
lower bound. Thus both methods are non-rigorous except in special cases, i.e., when
restrictions 2 and 3 listed in the introduction are satisfied.

Because both bounds are usually non-rigorous it is important to consider which
one is more trustworthy. We consider the case wieg 0 and, hopefullyn = 2. To
ensure thak; anda, are the lowest eigenvalues &f, we must show that they are less
than the lowest eigenvalug, of H'|r:

o
X = gg olH|p) =" (Vilo)*Ex, (4)
(plg)= k=1
where Hy, = Exy. The overlap coefficients are limited by how much overlap there

is between the eigenfunctions & andS. SinceS is an N-dimensional variational
subspace, a large calculation usually ensures (thgS) are close to one for the first
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severalk, sayk = 1,...,M « N. This implies that{y,|¢) would be close to zero
fork =1,...,M « N. Thus anapproximate lower bound toy would beE,; 1. As

the variational subspace increases in sizeincreases. Sincg; and i, are expected

to be close taF; and E», they should be less thaF,,, 1, and thus be the lowest two
eigenvalues of’. This is all very approximate and when the variational subspace is
small or not well-chosen the previous discussion does not apply.

The Temple bound, on the other hand, requiresihétk less thark, (assume that
(p|H|p) is the result of a variational calculation and thus equalo This is a much
tighter restriction or; than that given above (less tha,1). Furthermore, we must
pick anexplicit lower bound toE,; even ifi; is less than the unknowh,, an incorrect
bound onE, renders the Temple bound invalid. No explicit bounds are mad&.on
for our method, and our assumption thatand i, are less thark,, , is often more
reasonable than the Temple bound assumptiomthitless thark,.

In addition, the parametet, if chosen positive, can be used to increase the chance
that the lowest variational eigenvalues are less than the lowest eigenvahligzoby
increasing all the eigenvalues by C. This would worsen the bound, although make
it more reliable. If the lowest eigenvalue &f|g is known or somehow bounded, then
C can be chosen negative to make the bound@pbetter. This is done in an example in
section 4. Our method thus offers more flexibility than the Temple method.

3. Derivation
3.1. General approach

Write yr; as

N
Y1= S8+ > Scfe 5)

k=1

wheres € R is normalized andsy and S, are the (real) coefficients of the expansion

of ¢¥;. The N orthonormal functionsf;, span the variational subspa8e The function

f1 is the ground-state variational eigenfunction #fs; the remainingf, can be, but

are not required to be, the excited-state variational eigenfunctions. We then write the
expectation value oP’:

N
0> (1| P'lyn) = <505 + ) Sifi| P’
k=1

N
Sod + Z Skfk>
=1

N N N
= S3(8IP'I8) + 250 D Sklfil P'18) + D ) SeSie(fel P'| fi)
k=1

= c=1 k=1
= S2(8|H — PsH Ps — Pr(H + C) Pr|8)
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N
+280 Y Si(fi|H — PsH Ps — Pr(H + C) Pr|8)
1

k=

N N
+> ) SSilfelH — PsHPs— Pr(H + C)Prlfi).  (6)
c=1 k=1

Because of the projection operators (6) simplifies dramatically to:

N
0> (Y| P'|Y1) = —CS5+ 250 ) _ Si{fil H — PsHPs— Pr(H + C)Pr|8).  (7)
k=1

The remainingPsH Ps and Pr(H + C) Pr can both be removed, but it is useful to keep
the former.

N

0> (Yl P'lyn) = —CSZ+ 250 Y Sl ful H — PsH Ps8). (8)
k=1

We rewrite (8) as:
0> (Y1|P'|Y1) = —CS5 + 2S0S1(fie| H — PsH Ps|8) + 280S,(g|H — PsH Ps|5), (9)

whereg = Y L, Si fi € S(N) andS2 = 52 + S5+ - + S% but is perpendicular tg.
Taking absolute values of the majority of the right-hand side gives:

0< — (Y| P'|¥1)
< CS5 + 2|Sol|Sul|(fol H — PsH Ps|8)| + 2|Sol|S,||(g|H — PsH Ps|8)|. (10)

Then using the Cauchy—Schwarz inequality we have:
0 < — (1| P'|Y1) < CSG+ 2[Sol|S1|F + 2[Sol[S, |G, (11)

whereF = (fi|(H — PsH Ps)?| f1)"%, G = (g|(H — PsH Ps)®|g)"/*. We replace S|
with the upper bound of one an8,| with the upper boundl — $2)/2;

0 < — (Yl P'lyrn) < CSE+ 2180l F + 210/ (1 — 52)7°G. (12)
We now introduce the Eckart inequality [3]:
b = s > P A (13)
Letting H' = H — P’ in (13) gives:
2> E, — (%IHI/%) +/(¢1|P’I1ﬁ1) _ E, — E1/+ <W1/|P/|Wl>
E2 - El E2 - El
L B B WPy

E, — E
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SincekE’; is an upper bound té&1, (14) can be written as:

— P/
1 sz < ZlP) )
EZ__El
Substituting (15) in (12) gives:
_ P/ 1/2
0.< —(YalP'[y1) < CS2+2ISolF + 250@(%) . (16)
2 1

32. WhenC >0

To boundsS3 and|S| in (16) we first prove an Eckart-like inequality. We have:
E{—E, > E1— E, = (Y1lH — E, Y1) = (YalH' + P' — E,|yn),  (17)

wheren is as defined previously, i.e., that the lowestigenstates off’ and H'|s co-
incide, where 2< n < N. Then expand/; in terms of the eigenfunctiong, of the
intermediate Hamiltonian:

Ey— E, — (yn|P'|yn) > Y SY(E;, — E})
k=1
n—1 n—1
> SHE -~ E,) > (E1—E,) ) St (18)
k=1 k=1

This can be rearranged to give a lower bound to the square of the projection (overlap) of
¥1 on the subspacs, denoted bysZ:

E, — E; P’ P’
253 sps B B AP | WalPlv) 19)
E, -~ E} E,—E

Whenn = 2, (19) reduces to the Eckart inequality. Referring to the decomposition
of ¥4 in (5) it is clear thatS3 = 1 — SZ. Substitution of (19) ir§3 = 1 — 5% and then in
(16) to bound Sy| gives:

/ ) — (| P'|yre) \ — (Y| P'|yra) \ 2
0<—<w1|P|wl><cso+2(TEi> [F+G(ﬂ> ] (20)

We can use the square of the previous result to bai{§ras well:

/ — (Y| P'| Y1)
Of§ —‘ﬁpl|P “ﬁl>$;(j(__}i;tjifz__>

— (Y| P'|yre) \ — (| P'|yra) \
+2( E,— F ) [”G( Ey— ) ] 1)
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Next divide by(—(y1| P'|y1))Y/?, rearrange and square:

4F? c 2G -
0> (V| P'|Yry) > — 1-— — 22
(W1| |1ﬂ1> E;; — E:/L( E,; _ Ei (E;z _ E1)1/2<Eé — E/1)1/2> ( )

provided the quantityl — C - - -) is positive. Combining (22) with (2) gives us a lower
bound toE:

E1> E;]

4F? C 2G
( - 23)
E

-2
E, - E] v —E1 (B, — EpYA(E; - E1>1/2> '

The quantityF = (f1|(H — PsH Ps)?| f1)¥/? can straightforwardly be determined since
fi = v is known. The quantityG = (g|(H — PsH Ps)?|g)"/?, however, is a bit
trickier sinceg is an unknown function. Instead an upper bound;t@s calculated by
determining the maximum eigenvalue @ — PsH Ps)? on the variational subspa&
This requires another variational calculation.

In (23) the constant’ may be taken as zero, or as some positive number to increase
the chance that the lowestvariational eigenvalues are less than the lowest eigenvalue
of H'|r by increasing all the eigenvaluesknby C. The price to pay for this increased
likelihood of getting a trustworthy bound is that a positi?evorsens the lower bound.

An upper limit onC is determined so that th@ — C - - -) term in (23) is always positive.

33 WhenC <0

The constantC can be made positive when there is uncertainty that the lowest
n variational eigenvalues are less than the lowest eigenvalug’|af however, when
we are certain of this, the@ can be made negative to improve the bound, being the
difference between the, = E;, and the lowest eigenvalue &f'|zr. We encounter such
a case in section 4 when we apply our method to an example. For such certainty it is
usually necessary for restrictions 2 and 3 listed in the introduction to be satisfied. When
C < 0 a different approach must be taken than in the latter part of section 3.2 because
the S3 term in (20) must be bounded from below instead of above as before:

— (Y| P'|Ya) |2 — (Y| P'|Y1) \ 2
0< — P’ <CS2 42 ——=~ F _ . (20
(W1l P'lyn) < CS§+ ( £ E ) T\ (20)
A lower bound toS3 can be found be found by first assuming a trivial lower bound of
zero in (16):

<w1|P/|w1>>”2>

0 < — (Y1l P'lyn) <2|So|(F+G(_Eé_E,1 (24)

which leads to the lower bound:

(— (1| P'|Yr1))? )
0< <S5 25
A(F + G(—(Y1| P'|Y1) /(Ey — Ep)Y2)2 =70 (25)
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Combining (25) and (20) and rearranging gives an inequality cubig #a (—(yr;
| P/ [yt

c y3 2 3y 3y 1 F3
3 2 2
whereA, = E, — E] andy = G/(E; — E7). If (26) can provide an upper bound 10
then the boundpperis squared and negated to give a lower boundkitd P'|v1) and
used in (2) for a lower bound tB:

El = E;/L + (lﬁ1|P/|lﬁ1) = Ei - x&pper (2)

One way to determine if an upper boundxt@xists is to plot the right-hand side
of (26) versus positive. If this curve intersects the-axis sloping downward and does
not rise up to intersect the-axis again, then this final intersecti@pyperis the maximum
value ofx, since by (26 must be such that the curve is positive.

4. Example

We illustrate the method on the following one-dimensional Hamiltonian:

1 d?
2dx?
where Vo is the particle-in-a-box potential for a box fram= 0 to x = m(zero inside

and infinite outside) ang is a constant. For th&-dimensional variational subspaBe

we use theV lowest eigenfunctions of the particle-in-a-box Hamiltonian (restriction 2).
Since the perturbation from the particle-in-a-box HamiltoniarHtds positive (restric-

tion 3), the eigenvalues of the particle-in-a-box Hamiltonkibox) are lower bounds

to the eigenvalues dfl. In particular, Ey,1(box) is a lower bound to the lowest eigen-
value of H’'|g. For the choices ofV tested, all the variational eigenvalues were lower
than this so that = N.

Furthermore, we are able to 1€t be negative which improves the lower bound
slightly. We letC = E}, — Ey;1(box), whereE}, = Ay and Ey,1(box) is a lower
bound to the lowest eigenvalue Hf |g. This lowers all the eigenvalues by C while
still keeping them above th¥ variational eigenvalues i8. Results forp = 1/2 and
p = 3/2 are shown in tables 1 and 2, respectively. In both cases, our current lower
bounds are higher than those from our previous method and the Temple formula.

H=- + Vbox + px, (27)

5. Conclusion

We have presented a new lower bound formula for the ground-state eigenvalue of
a Hamiltonian. In the general case, where the Temple method and ours may be applied
non-rigorously, we propose that our method is more likely to give a reliable bound al-
though the calculation is more intense due mainly to an additional matrix-eigenvalue
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Table 1
Lower bounds toE; for the perturbed particle-in-a-box Hamiltonigp = 1/2) are shown for the two
bounds derived in this paper, the best bound of our previous method, and the Temple bound. Two hartree
is used as a rigorous lower bound Ko for the Temple method. The variational upper bOlE@is also
shown. Hartree units are used for the energy.

Method N =10 N =50
Upper bound 132950164 3295014815474
C<0 1232950071 123295014815298
CcC=0 1.232950039 123295014815285
Previous 12329498 123295014812
Temple 12329484 123295014707

Table 2

Lower bounds tag1 for the perturbed particle-in-a-box Hamiltonign = 3/2) are shown calculated from

the two bounds derived in this paper and the best bound of our previous method. For this size perturbation

the variational upper boun#’ is greater than the only available lower boundAg, i.e., 2 hartree, so a
Temple bound cannot be calculated. Hartree units are used for the energy.

Method N =10 N =50
Upper bound 235902 2435902312140
C<0 2435899 2435902312106
c=0 2435898 2435902312103
Previous 2435895 2435902311697
Temple NA NA

problem that must be solved. For rigorous applications, the increase in calculational dif-
ficulty from the Temple bound stems from two additional reasons: (1) more knowledge
of the base Hamiltonian’s eigenvalues and eigenfunctions; and (2) being forced to use a
subspace of the base Hamiltonian eigenspace for a variational calculation using the full
Hamiltonian.

To justify this increase in difficulty we note that in the first case tegjee: 1/2),
our lower bound surpasses the Temple bound. Furthermore, in the secong case
3/2), our bound works when the Temple bound fails. The improvement over our pre-
vious method is two-fold: (1) the resulting bound is better in both cases tested; (2) the
calculation is simpler (at least, in tii& > 0 case).

Although we feel we have made a significant improvement in the numerical bound
and the bounding method itself from the introduction of a similar method, we still lack
an extension to excited states.
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