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Lower bounds to ground-state eigenvalues II
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An alternative to the Temple method for calculating a lower bound to the ground-state
eigenvalue of an operator is presented. The method presented is an improvement and general-
ization upon a similar method [M.G. Marmorino, J. Math. Chem. 32 (2002) 19–29]. For the
system tested the lower bound of the current method is significantly superior to the Temple
method and the previous method. Furthermore, the current method (like its predecessor) is
able to generate a lower bound when the Temple method fails.
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1. Introduction

A previous report [1] introduced a new method for generating a lower bound to the
ground-state eigenvalue of a Hamiltonian. It was shown that the method was similar to
the Temple bound but, in some cases, was able to provide a rigorous lower bound when
the Temple method could not. Despite this success the previous method suffers from
several restrictions:

1. Bounds the ground-state only.

2. Requires an exactly soluble base Hamiltonian (in part).

3. Requires the full Hamiltonian to be a positive perturbation from the base
Hamiltonian.

4. Requires a separate calculation to bound an overlap integral.

In this paper we remove restrictions 2–4 so that a general ground-state lower bound
results comparable to the Temple bound. This method and the Temple bound require in-
formation which is generally not available and so the bounds produced are usually not
rigorous lower bounds. In the special case when restrictions 2, 3 are satisfied, then
rigorous lower bounds can be obtained by both our method and the Temple method. Re-
striction 2 is severe for our method where a very large number of the base Hamiltonian’s
eigenfunctions and eigenvalues are used; on the other hand, the Temple method requires
knowledge of only the first excited-state eigenvalue of the base problem.
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2. Theory

We begin with an intermediate HamiltonianH ′:

H ′ = PSHPS + PR(H + C)PR, (1)

whereC is a constant andH is the full Hamiltonian of interest.S is anN-dimensional
variational subspace andR is the complement ofS; PS and PR are projection op-
erators ontoS and R, respectively. We assume that the lowestn variational eigen-
pairs (λ1, f1), . . . , (λn, fn) of the operatorH |S are also the lowestn eigenpairs of
H ′: (E′1, ψ ′1), . . . , (E

′
n, ψ

′
n), where 2� n � N .

The perturbation ofH ′ to the full HamiltonianH is P ′ = H − H ′. Our lower
bound formula is derived from the variational theorem:

E1 = 〈ψ1|H ′|ψ1〉 + 〈ψ1|P ′|ψ1〉 � E′1 + 〈ψ1|P ′|ψ1〉, (2)

where (E1, ψ1) is the ground-state eigenpair of the full Hamiltonian. It remains to bound
the non-positive〈ψ1|P ′|ψ1〉 from below, which is the subject of the section 3. (The non-
positive nature is evident from (2) sinceE′1 � E1.)

If we are not certain that the lowestn eigenstates ofH |S andH ′ are the same, then
there will be a lack of rigor in our method. A similar situation occurs in the Temple
ground-state lower bound which requires a lower bound,E lower

2 , to the first excited-state
eigenvalue,E2, as input:

E1 � 〈φ|H |φ〉 − 〈φ|H
2|φ〉 − 〈φ|H |φ〉2
E lower

2 − E′1
, (3)

whereφ is often obtained from a variational calculation and thus equated withf1. (A rig-
orousE lower

2 is usuallyE0
2 from a base HamiltonianH 0 which becomes the full Hamil-

tonianH = H 0+P under a positive perturbationP .) Furthermore, in the Temple bound,
the variational estimate〈φ|H |φ〉 (often equated withλ1) must be less thanE lower

2 . The
Temple bound is sometimes used without a rigorous lower bound forE2 [2]. In general
we are unable to prove that the lowestn eigenstates ofH |S andH ′ are the same for our
lower bound. Thus both methods are non-rigorous except in special cases, i.e., when
restrictions 2 and 3 listed in the introduction are satisfied.

Because both bounds are usually non-rigorous it is important to consider which
one is more trustworthy. We consider the case whenC = 0 and, hopefully,n = 2. To
ensure thatλ1 andλ2 are the lowest eigenvalues ofH ′, we must show that they are less
than the lowest eigenvalue,χ , of H ′|R:

χ = inf
ϕ∈R
〈ϕ|ϕ〉=1

〈ϕ|H |ϕ〉 =
∞∑
k=1

〈ψk|ϕ〉2Ek, (4)

whereHψk = Ekψk. The overlap coefficients are limited by how much overlap there
is between the eigenfunctions ofH and S. SinceS is anN-dimensional variational
subspace, a large calculation usually ensures that〈ψk|S〉 are close to one for the first
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severalk, sayk = 1, . . . ,M 
 N . This implies that〈ψk|ϕ〉 would be close to zero
for k = 1, . . . ,M 
 N . Thus anapproximate lower bound toχ would beEM+1. As
the variational subspace increases in size,M increases. Sinceλ1 andλ2 are expected
to be close toE1 andE2, they should be less thanEM+1, and thus be the lowest two
eigenvalues ofH ′. This is all very approximate and when the variational subspace is
small or not well-chosen the previous discussion does not apply.

The Temple bound, on the other hand, requires thatλ1 be less thanE2 (assume that
〈ϕ|H |ϕ〉 is the result of a variational calculation and thus equal toλ1). This is a much
tighter restriction onλ1 than that given above (less thanEM+1). Furthermore, we must
pick anexplicit lower bound toE2; even ifλ1 is less than the unknownE2, an incorrect
bound onE2 renders the Temple bound invalid. No explicit bounds are made onE2

for our method, and our assumption thatλ1 andλ2 are less thanEM+1 is often more
reasonable than the Temple bound assumption thatλ1 is less thanE2.

In addition, the parameterC, if chosen positive, can be used to increase the chance
that the lowest variational eigenvalues are less than the lowest eigenvalue ofH ′|R by
increasing all the eigenvalues inR by C. This would worsen the bound, although make
it more reliable. If the lowest eigenvalue ofH ′|R is known or somehow bounded, then
C can be chosen negative to make the bound onE1 better. This is done in an example in
section 4. Our method thus offers more flexibility than the Temple method.

3. Derivation

3.1. General approach

Writeψ1 as

ψ1 = S0δ +
N∑
k=1

Skfk, (5)

whereδ ∈ R is normalized andS0 andSk are the (real) coefficients of the expansion
of ψ1. TheN orthonormal functionsfk span the variational subspaceS. The function
f1 is the ground-state variational eigenfunction ofH |S; the remainingfk can be, but
are not required to be, the excited-state variational eigenfunctions. We then write the
expectation value ofP ′:

0 � 〈ψ1|P ′|ψ1〉 =
〈
S0δ +

N∑
k=1

Skfk

∣∣∣∣∣P ′
∣∣∣∣∣S0δ +

N∑
k=1

Skfk

〉

= S2
0〈δ|P ′|δ〉 + 2S0

N∑
k=1

Sk〈fk|P ′|δ〉 +
N∑
c=1

N∑
k=1

ScSk〈fc|P ′|fk〉

= S2
0〈δ|H − PSHPS − PR(H + C)PR|δ〉
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+2S0

N∑
k=1

Sk〈fk|H − PSHPS − PR(H + C)PR|δ〉

+
N∑
c=1

N∑
k=1

ScSk〈fc|H − PSHPS − PR(H + C)PR|fk〉. (6)

Because of the projection operators (6) simplifies dramatically to:

0 � 〈ψ1|P ′|ψ1〉 = −CS2
0 + 2S0

N∑
k=1

Sk〈fk|H − PSHPS − PR(H + C)PR|δ〉. (7)

The remainingPSHPS andPR(H + C)PR can both be removed, but it is useful to keep
the former.

0 � 〈ψ1|P ′|ψ1〉 = −CS2
0 + 2S0

N∑
k=1

Sk〈fk|H − PSHPS|δ〉. (8)

We rewrite (8) as:

0 � 〈ψ1|P ′|ψ1〉 = −CS2
0 + 2S0S1〈fk|H − PSHPS|δ〉 + 2S0Sg〈g|H − PSHPS|δ〉, (9)

whereg =∑N
k=2 Skfk ∈ S(N) andS2

g = S2
2 + S2

3 + · · · + S2
N but is perpendicular tof1.

Taking absolute values of the majority of the right-hand side gives:

0�−〈ψ1|P ′|ψ1〉
�CS2

0 + 2|S0||S1|
∣∣〈f1|H − PSHPS|δ〉

∣∣+ 2|S0||Sg|
∣∣〈g|H − PSHPS|δ〉

∣∣. (10)

Then using the Cauchy–Schwarz inequality we have:

0 � −〈ψ1|P ′|ψ1〉 � CS2
0 + 2|S0||S1|F + 2|S0||Sg|G, (11)

whereF = 〈f1|(H − PSHPS)
2|f1〉1/2, G = 〈g|(H − PSHPS)

2|g〉1/2. We replace|S1|
with the upper bound of one and|Sg| with the upper bound(1− S2

1)
1/2:

0 � −〈ψ1|P ′|ψ1〉 � CS2
0 + 2|S0|F + 2|S0|

(
1− S2

1

)1/2
G. (12)

We now introduce the Eckart inequality [3]:

〈
ψ1

∣∣ψ ′1〉2 = S2
1 � E′2− 〈ψ1|H ′|ψ1〉

E′2 − E′1
. (13)

LettingH ′ = H − P ′ in (13) gives:

S2
1 � E′2− 〈ψ1|H |ψ1〉 + 〈ψ1|P ′|ψ1〉

E′2− E′1
= E′2− E1 + 〈ψ1|P ′|ψ1〉

E′2− E′1
� E′2− Eupper

1 + 〈ψ1|P ′|ψ1〉
E′2− E′1

. (14)
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SinceE′1 is an upper bound toE1, (14) can be written as:

1− S2
1 � −〈ψ1|P ′|ψ1〉

E′2− E′1
. (15)

Substituting (15) in (12) gives:

0 � −〈ψ1|P ′|ψ1〉 � CS2
0 + 2|S0|F + 2|S0|G

(−〈ψ1|P ′|ψ1〉
E′2− E′1

)1/2

. (16)

3.2. When C � 0

To boundS2
0 and|S0| in (16) we first prove an Eckart-like inequality. We have:

E′1− E′n � E1 − E′n = 〈ψ1|H − E′n|ψ1〉 = 〈ψ1|H ′ + P ′ − E′n|ψ1〉, (17)

wheren is as defined previously, i.e., that the lowestn eigenstates ofH ′ andH ′|S co-
incide, where 2� n � N . Then expandψ1 in terms of the eigenfunctionsψ ′k of the
intermediate Hamiltonian:

E′1− E′n − 〈ψ1|P ′|ψ1〉�
∞∑
k=1

S2
k

(
E′k − E′n

)

�
n−1∑
k=1

S2
k

(
E′k − E′n

)
�

(
E′1− E′n

) n−1∑
k=1

S2
k . (18)

This can be rearranged to give a lower bound to the square of the projection (overlap) of
ψ1 on the subspaceS, denoted byS2

S:

S2
S �

n−1∑
k=1

S2
k � E′n − E′1+ 〈ψ1|P ′|ψ1〉

E′n − E′1
= 1+ 〈ψ1|P ′|ψ1〉

E′n − E′1
. (19)

Whenn = 2, (19) reduces to the Eckart inequality. Referring to the decomposition
of ψ1 in (5) it is clear thatS2

0 = 1− S2
S. Substitution of (19) inS2

0 = 1− S2
S and then in

(16) to bound|S0| gives:

0 � −〈ψ1|P ′|ψ1〉 � CS2
0 + 2

(−〈ψ1|P ′|ψ1〉
E′n − E′1

)1/2[
F +G

(−〈ψ1|P ′|ψ1〉
E′2− E′1

)1/2]
. (20)

We can use the square of the previous result to boundS2
0 as well:

0 � −〈ψ1|P ′|ψ1〉�C

(−〈ψ1|P ′|ψ1〉
E′n − E′1

)

+2

(−〈ψ1|P ′|ψ1〉
E′n − E′1

)1/2[
F +G

(−〈ψ1|P ′|ψ1〉
E′2− E′1

)1/2]
. (21)
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Next divide by(−〈ψ1|P ′|ψ1〉)1/2, rearrange and square:

0 � 〈ψ1|P ′|ψ1〉 � − 4F 2

E′n − E′1

(
1− C

E′n − E′1
− 2G

(E′n − E′1)1/2(E′2− E′1)1/2
)−2

(22)

provided the quantity(1− C · · ·) is positive. Combining (22) with (2) gives us a lower
bound toE1:

E1 � E′1−
4F 2

E′n − E′1

(
1− C

E′n − E′1
− 2G

(E′n − E′1)1/2(E′2− E′1)1/2
)−2

. (23)

The quantityF = 〈f1|(H − PSHPS)
2|f1〉1/2 can straightforwardly be determined since

f1 = ψ ′1 is known. The quantity,G = 〈g|(H − PSHPS)
2|g〉1/2, however, is a bit

trickier sinceg is an unknown function. Instead an upper bound toG is calculated by
determining the maximum eigenvalue of(H − PSHPS)

2 on the variational subspaceS.
This requires another variational calculation.

In (23) the constantC may be taken as zero, or as some positive number to increase
the chance that the lowestn variational eigenvalues are less than the lowest eigenvalue
of H ′|R by increasing all the eigenvalues inR by C. The price to pay for this increased
likelihood of getting a trustworthy bound is that a positiveC worsens the lower bound.
An upper limit onC is determined so that the(1−C · · ·) term in (23) is always positive.

3.3. When C < 0

The constantC can be made positive when there is uncertainty that the lowest
n variational eigenvalues are less than the lowest eigenvalue ofH ′|R; however, when
we are certain of this, thenC can be made negative to improve the bound, being the
difference between theλn = E′n and the lowest eigenvalue ofH ′|R. We encounter such
a case in section 4 when we apply our method to an example. For such certainty it is
usually necessary for restrictions 2 and 3 listed in the introduction to be satisfied. When
C < 0 a different approach must be taken than in the latter part of section 3.2 because
theS2

0 term in (20) must be bounded from below instead of above as before:

0 � −〈ψ1|P ′|ψ1〉 � CS2
0 + 2

(−〈ψ1|P ′|ψ1〉
E′n − E′1

)1/2[
F +G

(−〈ψ1|P ′|ψ1〉
E′2− E′1

)1/2]
. (20)

A lower bound toS2
0 can be found be found by first assuming a trivial lower bound of

zero in (16):

0 � −〈ψ1|P ′|ψ1〉 � 2|S0|
(
F +G

(−〈ψ1|P ′|ψ1〉
E′2− E′1

)1/2)
(24)

which leads to the lower bound:

0 � (−〈ψ1|P ′|ψ1〉)2
4(F +G(−〈ψ1|P ′|ψ1〉/(E′2− E′1))1/2)2

� S2
0. (25)
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Combining (25) and (20) and rearranging gives an inequality cubic inx = (−〈ψ1

|P ′|ψ1〉)1/2:

0 � x3

(
C

8
+ γ 3

�
1/2
n

− γ 2

2

)
+ x2

(
3γ

�
1/2
n

− 1

)
Fγ + x

(
3γ

�
1/2
n

− 1

2

)
F 2+ F 3

�
1/2
n

, (26)

where�n = E′n − E′1 andγ = G/(E′2 − E′1). If (26) can provide an upper bound tox,
then the boundxupper is squared and negated to give a lower bound to〈ψ1|P ′|ψ1〉 and
used in (2) for a lower bound toE1:

E1 � E′1+ 〈ψ1|P ′|ψ1〉 � E′1− x2
upper. (2)

One way to determine if an upper bound tox exists is to plot the right-hand side
of (26) versus positivex. If this curve intersects thex-axis sloping downward and does
not rise up to intersect thex-axis again, then this final intersectionxupperis the maximum
value ofx, since by (26)x must be such that the curve is positive.

4. Example

We illustrate the method on the following one-dimensional Hamiltonian:

H = −1

2

d2

dx2
+ Vbox+ px, (27)

whereVbox is the particle-in-a-box potential for a box fromx = 0 to x = π(zero inside
and infinite outside) andp is a constant. For theN-dimensional variational subspaceS
we use theN lowest eigenfunctions of the particle-in-a-box Hamiltonian (restriction 2).
Since the perturbation from the particle-in-a-box Hamiltonian toH is positive (restric-
tion 3), the eigenvalues of the particle-in-a-box HamiltonianEk(box) are lower bounds
to the eigenvalues ofH . In particular,EN+1(box) is a lower bound to the lowest eigen-
value ofH ′|R. For the choices ofN tested, all the variational eigenvalues were lower
than this so thatn = N .

Furthermore, we are able to letC be negative which improves the lower bound
slightly. We letC = E′N − EN+1(box), whereE′N = λN andEN+1(box) is a lower
bound to the lowest eigenvalue ofH ′|R. This lowers all the eigenvalues inR byC while
still keeping them above theN variational eigenvalues inS. Results forp = 1/2 and
p = 3/2 are shown in tables 1 and 2, respectively. In both cases, our current lower
bounds are higher than those from our previous method and the Temple formula.

5. Conclusion

We have presented a new lower bound formula for the ground-state eigenvalue of
a Hamiltonian. In the general case, where the Temple method and ours may be applied
non-rigorously, we propose that our method is more likely to give a reliable bound al-
though the calculation is more intense due mainly to an additional matrix-eigenvalue
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Table 1
Lower bounds toE1 for the perturbed particle-in-a-box Hamiltonian(p = 1/2) are shown for the two
bounds derived in this paper, the best bound of our previous method, and the Temple bound. Two hartree
is used as a rigorous lower bound toE2 for the Temple method. The variational upper boundE′1 is also

shown. Hartree units are used for the energy.

Method N = 10 N = 50

Upper bound 1.232950164 1.23295014815474
C < 0 1.232950071 1.23295014815298
C = 0 1.232950039 1.23295014815285
Previous 1.2329498 1.23295014812
Temple 1.2329484 1.23295014707

Table 2
Lower bounds toE1 for the perturbed particle-in-a-box Hamiltonian(p = 3/2) are shown calculated from
the two bounds derived in this paper and the best bound of our previous method. For this size perturbation
the variational upper boundE′1 is greater than the only available lower bound toE2, i.e., 2 hartree, so a

Temple bound cannot be calculated. Hartree units are used for the energy.

Method N = 10 N = 50

Upper bound 2.435902 2.435902312140
C < 0 2.435899 2.435902312106
C = 0 2.435898 2.435902312103
Previous 2.435895 2.435902311697
Temple NA NA

problem that must be solved. For rigorous applications, the increase in calculational dif-
ficulty from the Temple bound stems from two additional reasons: (1) more knowledge
of the base Hamiltonian’s eigenvalues and eigenfunctions; and (2) being forced to use a
subspace of the base Hamiltonian eigenspace for a variational calculation using the full
Hamiltonian.

To justify this increase in difficulty we note that in the first case tested(p = 1/2),
our lower bound surpasses the Temple bound. Furthermore, in the second case(p =
3/2), our bound works when the Temple bound fails. The improvement over our pre-
vious method is two-fold: (1) the resulting bound is better in both cases tested; (2) the
calculation is simpler (at least, in theC � 0 case).

Although we feel we have made a significant improvement in the numerical bound
and the bounding method itself from the introduction of a similar method, we still lack
an extension to excited states.
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